- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Fontanarrosa, Pedro (4)
-
Buecherl, Lukas (3)
-
Myers, Chris J. (2)
-
Thomas, Payton J. (2)
-
Densmore, Douglas (1)
-
Jones, Timothy S. (1)
-
Mante, Jeanet (1)
-
Mante, Jeanet V. (1)
-
Myers, Chris (1)
-
Myers, Chris J (1)
-
Nguyen, Tramy (1)
-
Roberts, Riley (1)
-
Sents, Zachary (1)
-
Stoughton, Thomas E. (1)
-
Zhang, Zhen (1)
-
Zundel, Zach (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sents, Zachary; Stoughton, Thomas E.; Buecherl, Lukas; Thomas, Payton J.; Fontanarrosa, Pedro; Myers, Chris J. (, ACS Synthetic Biology)
-
Buecherl, Lukas; Roberts, Riley; Fontanarrosa, Pedro; Thomas, Payton J.; Mante, Jeanet; Zhang, Zhen; Myers, Chris J. (, ACS synthetic biology)In synthetic biology, combinational circuits are used to program cells for various new applications like biosensors, drug delivery systems, and biofuels. Similar to asynchronous electronic circuits, some combinational genetic circuits may show unwanted switching variations (glitches) caused by multiple input changes. Depending on the biological circuit, glitches can cause irreversible effects and jeopardize the circuit’s functionality. This paper presents a stochastic analysis to predict glitch propensities for three implementations of a genetic circuit with known glitching behavior. The analysis uses STochastic Approximate Model-checker for INfinite-state Analysis (STAMINA), a tool for stochastic verification. The STAMINA results were validated by comparison to stochastic simulation in iBioSim resulting in further improvements of STAMINA. This paper demonstrates that stochastic verification can be utilized by genetic designers to evaluate design choices and input restrictions to achieve a desired reliability of operation.more » « less
-
Nguyen, Tramy; Jones, Timothy S.; Fontanarrosa, Pedro; Mante, Jeanet V.; Zundel, Zach; Densmore, Douglas; Myers, Chris (, Proceedings of the IEEE)
An official website of the United States government
